Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Meka, Raghu (Ed.)Differential privacy and sublinear algorithms are both rapidly emerging algorithmic themes in times of big data analysis. Although recent works have shown the existence of differentially private sublinear algorithms for many problems including graph parameter estimation and clustering, little is known regarding hardness results on these algorithms. In this paper, we initiate the study of lower bounds for problems that aim for both differentially-private and sublinear-time algorithms. Our main result is the incompatibility of both the desiderata in the general case. In particular, we prove that a simple problem based on one-way marginals yields both a differentially-private algorithm, as well as a sublinear-time algorithm, but does not admit a "strictly" sublinear-time algorithm that is also differentially private.more » « less
-
The data management of large companies often prioritize more recent data, as a source of higher accuracy prediction than outdated data. For example, the Facebook data policy retains user search histories for months while the Google data retention policy states that browser information may be stored for up to months. These policies are captured by the sliding window model, in which only the most recent statistics form the underlying dataset. In this paper, we consider the problem of privately releasing the L2-heavy hitters in the sliding window model, which include Lp-heavy hitters for p<=2 and in some sense are the strongest possible guarantees that can be achieved using polylogarithmic space, but cannot be handled by existing techniques due to the sub-additivity of the L2 norm. Moreover, existing non-private sliding window algorithms use the smooth histogram framework, which has high sensitivity. To overcome these barriers, we introduce the first differentially private algorithm for L2-heavy hitters in the sliding window model by initiating a number of L2-heavy hitter algorithms across the stream with significantly lower threshold. Similarly, we augment the algorithms with an approximate frequency tracking algorithm with significantly higher accuracy. We then use smooth sensitivity and statistical distance arguments to show that we can add noise proportional to an estimation of the norm. To the best of our knowledge, our techniques are the first to privately release statistics that are related to a sub-additive function in the sliding window model, and may be of independent interest to future differentially private algorithmic design in the sliding window model.more » « less
An official website of the United States government

Full Text Available